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High-Field Effects Limit CMOS Scaling

! Ideally, scaling is to be done at constant field

! In practice, scaling has been achieved by increasing 
electric fields

! High gate oxide field " large gate tunneling current
� Solution:  High-k gate insulator

� New reliability challenges   PBTI
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Miniaturización � Scaling�
�Moore�s �Law� predicted ONLY continuous size decrease
�Dennard�s Scaling theory predicted the performance increases associated with 
smaller device size
�Moore provide the path and Dennard provided the way to implement it
�The end is near has been a recurring theme in the  semiconductor industry for many 
years.
�First paper predicting the end was published by RCA over 30 years ago
� We are still predicting the end

� Tunneling Current Increase at larger fields
�High K to the rescue

� what is next?
�3D, Fin Fets, ��.   End of Silicon Scaling

�Atoms don�t scale !!
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BipolarBipolar

Moore�s �Law� Will Continue in the near future
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Wafer Fab Cost Trend
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�A dramatic rise in capitalization occurs as technology no longer
supports “trivial” linear shrinks, requiring significant innovation in 
technology and supporting tooling
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Lithography Challenges
! Scaling now  requires you to do the improbable, such as imaging features 

1/5th the wavelength of the light you are using to create the image
#Images are now created by interference, not classical shadowing

#Computing & checking features required to achieve a given design takes 
roughly 4000% the time it took in the last technology generation.

The image you want to 
print

The image you get if 
everything works perfectly

The Mask you shine 
light through to get 
what you wanted
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Lithography Progress
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� Underwater Lithography has extended use of 193nm
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) Limitations of Classical Scaling

�We have entered the regime of non-statistical material and 
device behaviors 

→ RELIABILITY IMPLICATIONS
� Oxide thickness is now measured in terms of atomic layers.

� Atomic level fluctuations have dramatic consequences

� Dopant concentration fluctuations on the atomic scale are now meaningful
� Devices dimensions are so small as to preclude the use of statistics

Limitations of Classical ScalingLimitations of Classical Scaling
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Tolerances of 8 atoms and 8% of light wavelength!
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Challenges and Future Technology Path 
Reliability Topics
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Qualification: Reliability Management

!Technology Qualification must cover all reliability aspects removing 
systematic and managing random defects

Use Hours

F
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Useful Life

Infant
Mortality Wearout
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Improper Use of �Cumulative Fail�

� First of all, let’s dispense with the improper application 
of the cum fail concept to parameter drift mechanisms, 
such as NBTI (HCI)

� There seems to be considerable misconception in the 
industry regarding this point, as for example, this 
qualification criterion:

“10% Idsat degradation, 0.1% cum fail”

Implying that the measured statistics of the time for 
degradation to reach 10% is a valid predictor of product 
lifetime!

Courtesy S. Rauch
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Hard Fail Mechanism (eg. Electromigration)

R
/R

0

Time (hours)

Time to Fail  (TTF)

Failure

�Clearly defined TTF that correlates well to product failure. 
�Circuit sensitivity or initial resistance does not make any significant 
difference to the product fail time. 

TTF is relatively

independent of 

failure definition.  
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Time to fail  Distribution (Electromigration )

This is useful for predicting product life because:
�Product fail statistics are determined by the element fail statistics (metal line 
in this case.)
�Product Test margin has virtually no effect on product TTF.  

Field Time (Years)

t50 ~ 100 yr

t0.1 ~ 45 yr

t(10-11) ~ 18 yr
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Gradual Shift Mechanism ( Hot Carriers, BTI )

Ex.  ID VG for NMOS



IBM Systems and Technology Group - SRDC

© 2010 IBM Corporation19 Tokyo 2010 (Guarín)

Gradual Shift Mechanism (eg. Hot Carriers)
I O

N

Time (hours)

�There is no clear and unambiguous TTF that correlates directly with product failure.
�Circuit sensitivity determines the final parameter value that causes failure. 
�The amount of shift that causes a product fail depends on the initial parameter value. 

Ion shifts shown
for three devices. 
TTF based on:
5% shift ,
10% shift , 
LSL ,
are very different.
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Hot Carrier Time to Fail Distribution

This is not useful for predicting product life because:
�Product fail statistics are dominated by product performance distribution.
�Product Test margin has large effect on product Time to Fail. 

�Ascribing a fail point to a certain value of parameter shift is obviously not useful.

�

Based on
10% shift:

t50 ~ 1 yr

t0.1 ~ 0.33 yr
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Modeling Realistic Impact to Product

! Model device shifts as a function of device parameters (Lpoly, VT, 
tOX, etc.) and environment (VDD, TJ)

! Model circuit sensitivity (performance shift vs. device shift.) 

! Model product performance before and after degradations, 
taking into account testing strategy. All device shifts must be 
considered together (NBTI + HC.)

! A robust strategy for model validation must be in place
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Channel Hot Carriers

Channel carriers whose temperature (Thc)  is locally 
(near drain)  larger than the lattice temperature.

Thc is mainly determined by:
Large lateral Electric Field in the pinch-off region.
Energy exchange processes (e.g., phonon scattering, 

impact ionization, e-e scattering, etc.)
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Bad Effects of Channel Hot Carriers

! Carriers with Energy > EG cause Impact Ionization
(electron-hole pair generation)
Latchup

! Carriers with high Energy impacting the SiO2 interface 
cause Interface State Generation
ION, VT degradation

! Carriers injected into the SiO2 lead to Charge Trapping
VT shift

SLOWER CIRCUIT OPERATION
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Older Technology PFET HC Behavior
3.3V Appl.: Leff=0.26 µµµµm, tOX = 6.8 nm, Vdstr = -5.0 V

∆∆ ∆∆ I
D

,  
%

t, sec

Hole Injection 
and electron 
trapping of 
roughly equal 
strength.

Note impact of 
VG stress

Electron Trapping, log t

Hole Injection
tn

n llll 0.5
+
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Newer Technology PFET HC Behavior
1.2 V Appl.: Leff=0.07 µµµµm, tOX = 1.6 nm, Vdstr = -1.9 V

∆∆ ∆∆ I
D

,  
%

t, sec

Hole Injection 
completely 
dominant.

Hole Injection
tn, n llll 0.25

+
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E-E  scattering  
There is a small  probability that 
two high energy electrons undergo 
a scattering process  so that one 
electron gains most of the total 
energy leading to a small electron 
population of carriers up to about 
twice qVds

Scattering rate is proportional to n2

or ≈ Is2

E-E SCATTERING PHENOMENA 

In very short channel devices electrons can gain the supply 
energy qVds by travelling in the pinchoff region quasi balistically.

qVds 2qVds

EE scattering event
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Non Linearity due to simplification of actual LEM
and e-e Scattering

Linear Extrapolation
ττττ = 200 U.

Actual LEM 
ττττ = 60 U. 

( Isx not exponential vs 1/V)

Electron to Electron
Scattering
ττττ = 30 U.

Supported by data
collected at voltage 

closer to use condition

Linear extrapolation
and LEM  will yield 

overly optimistic 
predictions
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Bias
Temperature  Instability

NBTI - PBTI
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PMOSFET wearout mechanism resulting in positive charge buildup – oxide 
bulk charge and donor type interface states at the SiO2/Si interface under 
the influence of applied negative gate voltage

Damage is related to “cold holes” – no drain bias needed.

What is NBTI?

Gate Oxide
Vg < 0 V

Vs=Vd=Vnw = 0 V

holes

Inverted 
Channel

DrainSource

+ + + + + + + + + + + + +

NBTI damage is

• Not associated with 
channel carrier  transport 

• Not related to tunneling 
gate current in thin oxides

Mechanism typically investigated in a capacitor configuration with channel inverted   
(symmetric damage)

First reported by Deal in 1967. [B. Deal et al., J. Electrochem. Soc., 114, 266 (1967).]
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Brief overview of NBTI  
NBTI (Negative Bias Temperature Instability)  refers to the degradation mechanism of p-
MOSFETs when the device is stressed with negative gate bias at elevated temperature

� Negative Bias: Gate is negative to Source, Drain & Bulk. 
� Temperature: NBTI is enhanced by high temperature
� Instability: Device parameters (Vt, Gm, Id,sat, Id,lin, etc.) shift 

with stress time

Vd (V)
-1.4-1.2-1.0-.8-.6-.4-.20.0

Id
 (A

)

-.0014

-.0012

-.0010

-.0008

-.0006

-.0004

-.0002

0.0000

fresh device
after NBT stress

Vg,stress = -2.5V
T = 125oC
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NBTI-Induced Vt Shifts

Temperature and Temperature and 
Vg significantly Vg significantly 
influence the  influence the  
level of Vlevel of Vtt shiftshift
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� Typical NBTI Models:
NBTI Degradation Model – Mean Shift

1. exp
m

GS n
T

OX

V HV A t
T kT

  ∆ ∆ = −   
  

2. exp expGS n
T

OX

V HV A a t
T kT

  ∆ ∆ = −   
  

�Power Law�

�Exponential Law�

These equations describe the average or mean shift observed.

Often A is higher for narrow PFETs, such as in an SRAM cell.

Typical values: m ~ 3-4, ∆H ~ 0.1�0.2 eV, n ~ 0.15-0.3
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NBTI Implications
NBTI�s increased relevance due to:
Can not be reduced by increasing Channel Length as in Hot Carrier
Gate electric field has increased as a result of transistor scaling.

Increased Nitrogen levels  added into gate oxide.

Chip operating temperature has increased. 

Surface p-channel MOSFETs has replaced buried p-channel MOSFETs. 

Schroder JAP 2004

Kimizuka et al, 2000
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NBTI Recovery � (Measurement Implications)
NBTI measurement results are sensitive to the measurement time, due to the recovery 
during the measurement. 

100 101 102 103 104

10

100 Vstress = -2.6V
Vrelax = 0V
T = 125 oC

| ∆∆ ∆∆
V t| (

m
V)

teff (s)

 1 ms
 1 s
 8 s

n =
0.18
0.20
0.21

Delay

∆Vt recovery due to 
measurement delay.

� Relaxation occurs during the measurement delay
� Power law time-dependence factor is affected

Recovery effect after 
releasing NBTI stress
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NBTI  Recovery

G. La Rosa et al., IRPS 06, pp. 274-282.

2 Components:

-Hole trapping and 
detrapping

(Recoverable)

-Interface state trap 
creation 

(Permanent)

Huard et al   2007 IEDM
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Charge Trapping in High-K

! HfO2 contains pre-existing Defects (or traps)
Electron injection from Si in nFETs in On-State

Traps �trap� electrons
Trapped charge causes Threshold Voltage (VTH) � (Need VTH to be low)

Performance ↓
Known as Positive Bias Temperature Instability (PBTI) or �Charge Trapping�

Did not exist in SiON based technologies → RELIABILITY IMPLICATIONS
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AC Considerations
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Typical Voltage vs. Time plot generated from PowerSPICE for inverter

PDELAYRPDELAYF

VIN
VOUT

50% VDD
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PDELAYF vs Temp/Leff @ 1.5V
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Ring Oscillator ∆ Delay  vs # Cycles @ 30°C

At room temperatureAt room temperature
for a high # cycles for a high # cycles 
NFET is dominant.NFET is dominant.
but PFET contribution but PFET contribution 
H.C + NBTIH.C + NBTI
is not negligibleis not negligible∆∆ ∆∆

D
el

ay
,  

A
.U

.

# of Cycles
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Ring Oscillator ∆ Delay vs # cycles @ 125°C

At high temperatureAt high temperature
for  # cycles < 4x10for  # cycles < 4x101414

NBTI contribution NBTI contribution 
from PFET is clearly from PFET is clearly 
dominant.dominant.∆∆ ∆∆

D
el
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,  

A
.U

.

# of Cycles
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Ring Oscillator I
Quasi-static calculation for the PFET- Energy Driven HC [37]

Mid-Vg Dominates
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Ring Oscillator I 
Quasi-static calculation for PFET- LSHAN [37]

Hi-Vg Dominates



IBM Systems and Technology Group - SRDC

© 2010 IBM Corporation45 Tokyo 2010 (Guarín)

PFET Results (Data Points), and Predictions (Lines)
(pure NBTI added to each quasi-static calculation) [37]

EDHC
(Mid-Vg)

LSHAN
(Hi-Vg)

Data:

Courtesy S. Rauch
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Universal Energy Driven Hot Carrier � Mid Vg
D

R
 / 

I D
2 , 

A
U

VEFF, V

> 900 Devices 
VDS = 1.2 � 4.25V
6 Device Types 
Various LDES, VGS
(�Mid Vg�)

The Damage Rate, DR, follows a universal curve: DR(VEFF) ∝ ID2 SIT(q mEE VEFF)
irrespective of scaling, proving that the available energy, not electric field, is 
driving the damage rate. [S. Rauch]

exp( ), /

( ) , /
IT IT

p
IT IT

S aE E p a
E E p a

φ
φ φ

∝ ≤ +

∝ − > +

with φIT = 1.6 eV, p = 14, a = 12 eV-1
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Universal Energy Driven Hot Carrier � PFET Mid Vg

PFET Mid Vg HC follows the same universal curve. [37]

∆D
R

 / 
I D

2 , 
A

U

E = 1.8qVEFF, eV

Note increased data
scatter over NFET.
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SRAM  Reliability Topics
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6 Transistor SRAM bit cell

PU PFET
(P0)

PD NFET
(N0)

PU PFET
(P1)

PD NFET
(N1)

PG NFET
(T0)

PG NFET
(T1)

Vdd

Word Line (WL)

BLT
(Bit Line True)

BLC
(Bit Line Complement)

Gnd

PG = Pass Gate
Transfer Gate
Access Transistor

PD = Pull Down

PU = Pull Up
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Threshold Voltage Variation

Sigma Vt vs sqrt(Area)
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Smaller cells $ smaller FETs $ greater Vth variation
Vth variation inversely proportional to √(L* W)
due to random dopant fluctuation

R.W. Keyes, “The effect of randomness in the distribution
Of impurity atoms on FET thresholds,” App. Phys. vol. 8, no. 3: 251-9,1975

Statistical Nature of SRAMs:
Large number of bits on a chip
SRAM yield is determined by the weakest bit(s)
Cell operation is sensitive to PG,PD, PU ratios
The larger the variation, greater chance of a failing bit
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SRAM Cell Design
Bit cell physical layout and cell transistor characteristics chosen to meet

�Cell area 
�Cell stability 
�Speed of a read and write and 
�Standby current 

As technologies scale, cell sizes shrink and more bits are in a chip
� FET variations increase 
� Balancing the PG, PD, PU ratios to meet all criteria is more difficult

Standby
Current

Read/Write
Performance

Cell StabilityCell Area

Technology scaling

Standby 
Current

Read/Write
Performance

Cell StabilityCell Area

Scaling



IBM Systems and Technology Group - SRDC

© 2010 IBM Corporation52 Tokyo 2010 (Guarín)

SRAM Cell Reliability

Standby 
Current

Read/Write
Performance

Cell StabilityCell Area

Cell must meet requirements over product lifetime

Transistor changes over a cell�s lifetime can degrade 
cell stability, performance, and/or standby current

If cell changes are large enough, SRAM may fail in the field

In addition, physical layout must ensure no shorts or opens are induced in cell operation
Example: gate to contact short due to oxide breakdown

Time 0:
Cell meets criteria, but
Design for reliability not considered

Chip Operation

After N hours of operation:
Cell no longer meets stability criteria 

Standby 
Current

Read/Write
Performance

Cell Stability

Cell Area
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SRAM Vmin Failure Mechanism

WL WL

BLT BLC

T1 T2

T3 T4

T5 T6
A B

! Gate oxide leakage degrades the pull-
down  N-FET 

! P-FET degrades due to NBTI
! P-FET fights to keep high node at VDD

! This mechanism degrades stability of 
the cell 

! Causing Vmin to be out specification

Oxide leakage 
defect

PFET  NBTI

VDD

Mueller et al. IRPS 2004
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SRAM Stability degradation can cause chip failures after
burn-in or operation in the field due to so-called “Vmin” or 
“Vccmin” fails (primarily read disturb).

Major root mechanisms:

A. NBTI
B. Gate Dielectric Soft Breakdown  

1. Intrinsic
2. Extrinsic

Implications

A. Haggag et al., IRPS 06, pp. 541-544.
K. Mueller et al., IRPS 04, pp. 426-429.
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NBTI Degradation Model – Distribution

Even for identical use conditions and devices, NBTI will cause VT
mismatch shifts due to random variations in the number and spatial 
distribution of the charges/interface states formed. 

This is similar to random dopant fluctuation induced mismatch, and 
obeys similar statistics.

This means that small gate area devices will experience more NBTI 
induced mismatch.

The effect is relatively unimportant for typical CMOS digital logic, 
since path delays tend to average out individual device shifts, and 
device widths are fairly large. But for SRAM, it must be considered. 

S. Rauch, IEEE TDMR, Vol. 2, No.4,  pp. 89-93, (2002).
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Review and Perspective
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Accelerating Advances in Technology
In 100 years  15 order of magnitude improvement !
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Perspectives  - 2010
! Years since 1st transistor (1947) � 63 years
! Estimated number of transistors produced � 1.5 x1019

( If rice, about a trillion tons of long grain rice -

about 1,300 x the world wide production*)
! Transistors consumed per person � 2x109

How many transistors in your pocket?
! $�s per person spent on transistors - $40
! Price of a transistor � 20 nanodollars

(Is that why its called nanotechnology?)
! Data Explosion:

In 2010 digital information will grow to 988 Exabytes
1 Exabyte = 1018

1 Zettabyte = 1021

Courtesy R. Lange
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Conclusions
! CMOS scaling fast approaching its fundamental limits      
However, it remains a CMOS world; no alternative on horizon
!The end of scaling is in sight  → Atoms don�t scale !
!Silicon Technology will continue to dominate
!As we scale further Reliability challenges are greater

!Oxide integrity, Bias Temperature Instabilities, Hot 
Carriers, electromigration��

!SRAM stability compromised by reliability shifts 
!Reliability mechanisms must be taken into account for 
successful designs as technology scales
!Reliability Issues gate the viability of many new promising 
technologies
!Thank you for attending 


